Sodium channelopathy underlying familial sick sinus syndrome with early onset and predominantly male characteristics.
نویسندگان
چکیده
BACKGROUND Sick sinus syndrome (SSS) is a common arrhythmia often associated with aging or organic heart diseases but may also occur in a familial form with a variable mode of inheritance. Despite the identification of causative genes, including cardiac Na channel (SCN5A), the pathogenesis and molecular epidemiology of familial SSS remain undetermined primarily because of its rarity. METHODS AND RESULTS We genetically screened 48 members of 15 SSS families for mutations in several candidate genes and determined the functional properties of mutant Na channels using whole-cell patch clamping. We identified 6 SCN5A mutations including a compound heterozygous mutation. Heterologously expressed mutant Na channels showed loss-of-function properties of reduced or no Na current density in conjunction with gating modulations. Among 19 family members with SCN5A mutations, QT prolongation and Brugada syndrome were associated in 4 and 2 individuals, respectively. Age of onset in probands carrying SCN5A mutations was significantly less (mean±SE, 12.4±4.6 years; n=5) than in SCN5A-negative probands (47.0±4.6 years; n=10; P<0.001) or nonfamilial SSS (74.3±0.4 years; n=538; P<0.001). Meta-analysis of SSS probands carrying SCN5A mutations (n=29) indicated profound male predominance (79.3%) resembling Brugada syndrome but with a considerably earlier age of onset (20.9±3.4 years). CONCLUSIONS The notable pathophysiological overlap between familial SSS and Na channelopathy indicates that familial SSS with SCN5A mutations may represent a subset of cardiac Na channelopathy with strong male predominance and early clinical manifestations.
منابع مشابه
Sick sinus syndrome with HCN4 mutations shows early onset and frequent association with atrial fibrillation and left ventricular noncompaction.
BACKGROUND Familial sick sinus syndrome (SSS) is often attributable to mutations in genes encoding the cardiac Na channel SCN5A and pacemaker channel HCN4. We previously found that SSS with SCN5A mutations shows early onset of manifestations and male predominance. Despite recent reports on the complications of atrial fibrillation (AF) and left ventricular noncompaction (LVNC) in patients with S...
متن کاملTransforming Growth Factor-β1 T869C Gene Polymorphism Is Associated with Acquired Sick Sinus Syndrome via Linking a Higher Serum Protein Level
BACKGROUND Familial sick sinus syndrome is associated with gene mutations and dysfunction of ion channels. In contrast, degenerative fibrosis of the sinus node tissue plays an important role in the pathogenesis of acquired sick sinus syndrome. There is a close relationship between transforming growth factor-β1 mediated cardiac fibrosis and acquired arrhythmia. It is of interest to examine wheth...
متن کاملCongenital Long QT Syndrome: An Update and Present Perspective in Saudi Arabia
Primary cardiac arrhythmias are often caused by defects, predominantly in the genes responsible for generation of cardiac electrical potential, i.e., cardiac rhythm generation. Due to the variability in underlying genetic defects, type, and location of the mutations and putative modifiers, clinical phenotypes could be moderate to severe, even absent in many individuals. Clinical presentation an...
متن کاملDilated cardiomyopathy due to sodium channel dysfunction: what is the connection?
The cardiac sodium channel mediates the rapid upstroke of the cardiac action potential and thereby constitutes a critical determinant of cardiac excitability and conduction. Mutations in the SCN5A gene encoding the -subunit of this channel have been linked to a broad clinical spectrum of arrhythmia disorders, including long QT syndrome, Brugada syndrome, sick sinus syndrome, conduction disease,...
متن کاملNovel mutation in the α-myosin heavy chain gene is associated with sick sinus syndrome.
BACKGROUND Recent genome-wide association studies have demonstrated an association between MYH6, the gene encoding α-myosin heavy chain (α-MHC), and sinus node function in the general population. Moreover, a rare MYH6 variant, R721W, predisposing susceptibility to sick sinus syndrome has been identified. However, the existence of disease-causing MYH6 mutations for familial sick sinus syndrome a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Arrhythmia and electrophysiology
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2014